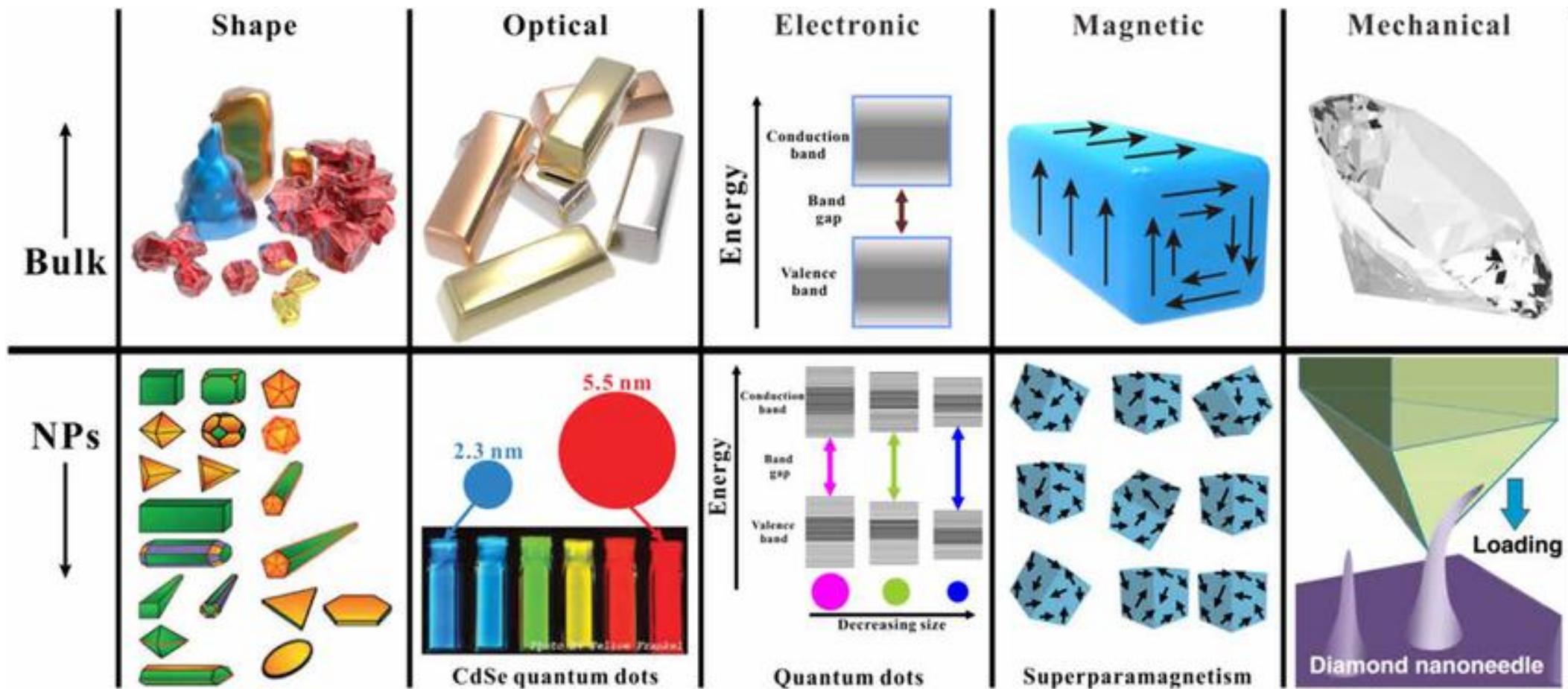
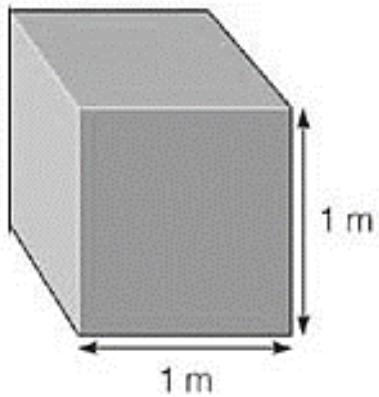


Nanomaterials


Dr. Ankita Ojha

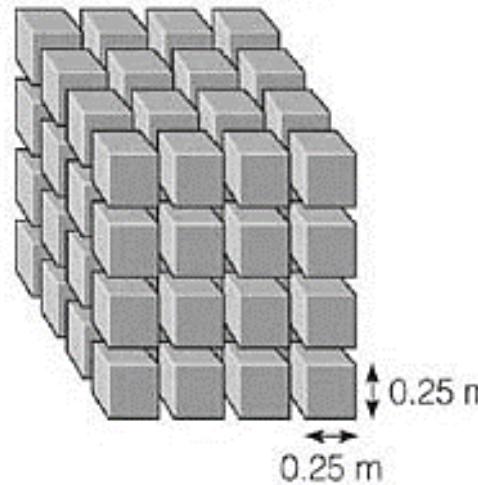
Department of Chemistry

M.B.R.R.P.S. College, Arrah


Definition of Nanomaterials

- Nanomaterials are materials in which at least one dimension lies in the nanometer range (1-100 nm).
 - 1 nanometer (nm) = 10^{-9} meter
- At the nanoscale, materials show new physical, chemical, optical, and electrical properties that are different from their bulk counterparts.

BULK vs NANO


Surface area = 6 m^2

Surface area = 12 m^2

Surface area = 24 m^2

**Surface area increases as we move
from Macro to nanolevel**

**At the nanoscale, classical physics becomes inadequate and quantum effects
become significant.**

Why is nanoscale special?

- The nanoscale (1-100 nm) is special because materials at this size behave **very differently** from their bulk form.

1. Large surface area to volume ratio

At the nanoscale, a huge fraction of atoms lie on the surface. This makes materials **more reactive, stronger catalysts, and better at adsorption.**

2. Quantum effects become dominant

Electrons are confined in very small spaces, leading to **quantum size effects**. As a result, materials show **new optical, electrical, and magnetic properties** that do not exist at larger scales.

3. Size-dependent properties

Changing the particle size can change the **color, conductivity, melting point, hardness, and chemical reactivity** of a material.

4. Enhanced mechanical properties

Nanomaterials can be **stronger, lighter, and more flexible** than bulk materials due to fewer defects and better atomic packing.

5. Unique optical behavior

Nanoparticles interact with light differently, leading to phenomena like **surface plasmon resonance**, used in sensors and medical diagnostics.

6. Interdisciplinary impact

At the nanoscale, physics, chemistry, biology, and engineering overlap, enabling **innovations in medicine, electronics, energy, and environmental science**.

Surface Effects at the Nanoscale

1. High fraction of surface atoms

At the nanoscale, a large number of atoms lie **at or near the surface** rather than in the bulk. This leads to **high surface energy**, making nanomaterials more **reactive and unstable** compared to bulk materials.

2. Surface tension

Liquid surfaces behave like **elastic films** due to unbalanced cohesive forces acting on surface molecules. At the nanoscale, surface tension becomes more significant and strongly influences **shape, stability, and growth** of nanoparticles.

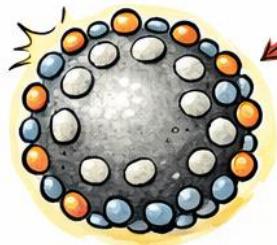
3. Kelvin effect

Smaller particles or droplets exhibit **higher vapor pressure** than larger ones. As a result, nanosized droplets **evaporate faster**, affecting processes such as condensation, nanoparticle growth, and stability.

4. Ostwald ripening

Due to differences in surface energy, **smaller particles dissolve** and redeposit onto **larger particles**, causing the growth of large particles at the expense of smaller ones. This process reduces total surface energy but leads to **particle size increase over time**.

5. Adsorption


The high surface area of nanoparticles allows **impurities, gases, or molecules** to readily stick to the surface. Adsorption plays a crucial role in **catalysis, sensing, and surface modification**.

6. Surface charge

Adsorption of ions from the surrounding medium can leave nanoparticles **electrically charged**. This surface charge affects **colloidal stability, interaction with other particles, and dispersion behavior**.

Surface Effects at the Nanoscale

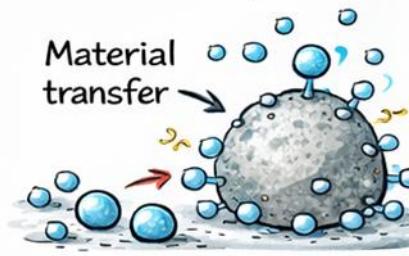
High fraction of Surface Atoms

Surface atoms

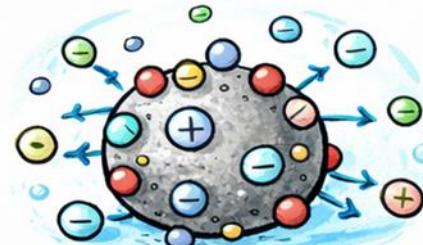
- Most atoms lie at or near the surface
- High surface energy → More reactive

- ✓ Most atoms lie at or near the surface
- ✓ High surface energy → More reactive

Surface Tension


- ✓ Surface behaves like elastic film
- ✓ Strongly influences nanoparticle shape & stability

Kelvin Effect


- ✓ Smaller particles evaporate faster
- ✓ Higher vapor pressure for smaller size

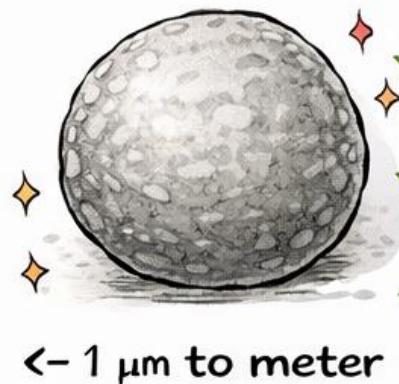
Ostwald Ripening

- ✓ Smaller particles dissolve
- ✓ Larger particles grow over time

Surface Charge

- ✓ Adsorbed ions create surface charge
- ✓ Affects colloidal stability & dispersion

Effects of approaching Nanoscale:


- 1. Increase in Surface-to-Volume Ratio:** As the size of a material decreases to the nanoscale, its surface-to-volume ratio increases sharply. A large fraction of atoms lie on the surface, making surface effects dominant. This results in higher surface energy, enhanced chemical reactivity, and greater influence of adsorption and surface forces.
- 2. Reduction in Dimensions Affects Material Properties:** Reducing the dimensions of a material to the nanoscale significantly alters its physical, chemical, optical, electrical, and mechanical properties. These changes arise due to quantum confinement effects and increased surface contribution, leading to size-dependent behavior that is absent in bulk materials.

Macro vs Nano: The Size Effect

MACRO LEVEL	NANO LEVEL
<ul style="list-style-type: none">• Large dimensions (micrometer to meter scale)• Very small surface-to-volume ratio• Properties are size-independent• Classical physics dominates• Lower surface energy and reactivity• Mechanical, optical, and electrical properties remain constant	<ul style="list-style-type: none">• Dimensions between 1–100 nm• Extremely high surface-to-volume ratio• Properties become size-dependent• Quantum effects dominate• High surface energy and enhanced reactivity• Unique optical, electrical, and mechanical properties

Macro vs Nano: The Size Effect

Macro Scale (Bulk Materials)

< 1 μm to meter

- ✓ Large size, small surface-to-volume ratio
- ✓ Properties are size-independent
- ✓ Classical physics dominate

Reduction
in Size

Nano Scale (Nanomaterials)

- ✓ Extremely high surface-to-volume ratio
- ✓ Properties are size-dependent
- Quantum effects dominate
- ✓ High surface energy and reactivity
- ✓ Unique properties emerging at nanoscale

- ✓ Large size, small surface-to-volume ratio
- ✓ Properties are size-independent
- ✓ Classical physics dominate
- ✓ Low surface energy and reactivity
- ✓ Properties remain constant with size

Key Size Effects Observed

- Increased surface activity
- Quantum confinement of electrons
- Changes in color, conductivity, melting point
- Enhanced catalytic & mechanical performance

Reducing material size from macro to nano introduces unique properties:
high surface activity and quantum effects.